Need Help?

Subscribe to Probability

Subscribe
  • Notes
  • Comments & Questions

The net weight in pounds of a packaged chemical her-
bicide is uniform for $$49.75<x<50.25$$ pounds.

(a) Determine the mean and variance of the weight of pack-
ages.
(b) Determine the cumulative distribution function of the
weight of packages.
(c) Determine $$P(X<50.1)$$ .

$$49.75<x<50.25$$

(a) $$\mu, \sigma^{2}$$

(b) $$F(x)$$

(c) $$P(x<50.1)$$

(a) $$\mu=\frac{b+a}{2}, \sigma^{2}=\frac{(b-a)^{2}}{12}$$

$$\mu=\frac{50.25+49.75}{2}=50$$

$$\sigma^{2}=\frac{(50.25-49.75)^{2}}{12}=0.0208$$

(b) $$F(x)=\int_{a}^{x} \frac{1}{b-a} d x=\frac{x-a}{b-a}$$

$$a \leq x < b$$

$$49.75<x<50.25$$

$$F(x)=\frac{x-49.75}{50.25-49.75}=2 x-99.5$$

$$F(x)=\left\{\begin{array}{cc}{0} & {x<49.75} \\ {2 x-99.5} & {49.75<x<50.25} \\ {1} & {50.25<x}\end{array}\right.$$

$$P(x<50.1)=F(50.1)$$

$$=2(50.1)-99.5=0.7$$

Suppose the time it takes a data collection operator to
fill out an electronic form for a database is uniformly between
1.5 and 2.2 minutes.

(a) What is the mean and variance of the time it takes an op-
erator to fill out the form?
(b) What is the probability that it will take less than two min-
utes to fill out the form?
(c) Determine the cumulative distribution function of the time
it takes to fill out the form.

$$1.5<x<2.2$$

(a) $$\mu, \sigma^{2}$$

(b) $$P(x<2)$$

(c) $$F(x)$$

$$\mu=\frac{b+a}{2}=\frac{2.2+1.5}{2}=1.85$$

$$\sigma^{2}=\frac{(2.2-1.5)^{2}}{12}=0.0408$$

(b) $$P(x<2)$$

$$F(x)=\frac{1}{b-a}$$

$$\int_{a}^{2} F(x) d x=\int_{1.5}^{2} \frac{1 d x}{2.2-1.5}$$

$$=\int_{1.5}^{2} 1.4286 d x$$

$$P(x<2)=\left.1.4286 x\right|_{1.5} ^{2}=0.7143$$

(c) $$F(x) \rightarrow a<x<b$$

$$F(x)=\frac{x-a}{b-a}=\frac{x-1.5}{0.7}=1.4286 x-2.143$$

$$F(x)=\left\{\begin{array}{cc}{0} & {x<1.5} \\ {1.4286 x-2.143} & {1.5<x<2.2} \\ {1} & {2.2 < x}\end{array}\right.$$

$$p(x<2)=F(2)$$

substitute in

$$1.4286 x-2.143 \quad 1.5<x<2.2$$

$$=0.7143$$

No comments yet

Join the conversation

Join Notatee Today!