${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
What curve is represented by the following parametric equation?
\(x=\cos (t), y=\sin (t), 0 \leq t \leq 2 \pi\)
\(\cos ^{2} x+\sin ^{2} x=1\)
(1) \(x^{2}+y^{2}=(\cos (t))^{2}+(\sin (t))^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1\)
(2) \(t=0 \Rightarrow x=\cos (0)=1 \quad y=\sin (0)=0 \quad(x, y)=(1,0)\)
\(\quad(x, y)=(\cos t, \sin t)\)
What curve is reprsented by the following parametric equations?
\(X=\sin (2 t), y=\cos (2 t), 0 \leq t \leq 2 \pi\)
(1) \(x^{2}+y^{2}=(\sin (2 t))^{2}+(\cos (2 t))^{2}=\sin ^{2}(2 t)+\cos ^{2}(2 t)=1\)
\((x, y)\)
(2) \(t=0 \Rightarrow x=\sin (2(0))=\sin (0)=0\)
\(y=\cos (2(0))=\cos (0)=1\)
\((x, y)=(0,1)\)
what are the curve represnted by the following parametric equations?
\(\begin{array}{l}{\mathrm{X}=\mathrm{t}} \\ {\mathrm{Y}=t^{2}}\end{array}\)
\(\Rightarrow y=x^{2}\)
\(\begin{array}{l}{X=e^{t}} \\ {Y=e^{2 t}}\end{array}\)
\(x^{2}=\left(e^{t}\right)^{2}=e^{t} \cdot e^{t}=e^{2 t}\)
\(\begin{array}{l}{X=t^{2}} \\ {y=t^{4}}\end{array}\)
\(\begin{array}{l}{\mathrm{X}=\sin (\mathrm{t})} \\ {\mathrm{Y}=\sin ^{2}(t)}\end{array}\)
No comments yet
What curve is represented by the following parametric equation?
\(x=\cos (t), y=\sin (t), 0 \leq t \leq 2 \pi\)
\(\cos ^{2} x+\sin ^{2} x=1\)
(1) \(x^{2}+y^{2}=(\cos (t))^{2}+(\sin (t))^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1\)
(2) \(t=0 \Rightarrow x=\cos (0)=1 \quad y=\sin (0)=0 \quad(x, y)=(1,0)\)
\(\quad(x, y)=(\cos t, \sin t)\)
What curve is reprsented by the following parametric equations?
\(X=\sin (2 t), y=\cos (2 t), 0 \leq t \leq 2 \pi\)
(1) \(x^{2}+y^{2}=(\sin (2 t))^{2}+(\cos (2 t))^{2}=\sin ^{2}(2 t)+\cos ^{2}(2 t)=1\)
\((x, y)\)
(2) \(t=0 \Rightarrow x=\sin (2(0))=\sin (0)=0\)
\(y=\cos (2(0))=\cos (0)=1\)
\((x, y)=(0,1)\)
what are the curve represnted by the following parametric equations?
\(\begin{array}{l}{\mathrm{X}=\mathrm{t}} \\ {\mathrm{Y}=t^{2}}\end{array}\)
\(\Rightarrow y=x^{2}\)
\(\begin{array}{l}{X=e^{t}} \\ {Y=e^{2 t}}\end{array}\)
\(x^{2}=\left(e^{t}\right)^{2}=e^{t} \cdot e^{t}=e^{2 t}\)
\(\Rightarrow y=x^{2}\)
\(\begin{array}{l}{X=t^{2}} \\ {y=t^{4}}\end{array}\)
\(\Rightarrow y=x^{2}\)
\(\begin{array}{l}{\mathrm{X}=\sin (\mathrm{t})} \\ {\mathrm{Y}=\sin ^{2}(t)}\end{array}\)
\(\Rightarrow y=x^{2}\)
No comments yet
Join the conversation