${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
Determine whether \(\int_{0}^{\pi / 2} \sec x d x\) converges or diverges
\(\int_{0}^{\pi / 2} \sec x d x=\ln |\sec x+\tan x| ]_{0}^{\pi / 2}\)
But \(\sec \left(\frac{\pi}{2}\right)=\infty \quad \Rightarrow\) integral is improper because it is discontinous at \(\frac{\pi}{2}\)
\(\int_{0}^{\pi / 2} \sec x d x=\lim _{t \rightarrow\left(\frac{\pi}{2}\right)^-} \int_{0}^{t} \sec x d x\)
\(=\lim _{t \rightarrow\left(\frac{\pi}{2}\right)^{-}}|\sec x+\tan x| ]_{0}^{t}\)
\(\begin{array}{l}{=\lim _{t \rightarrow \frac{\pi}{2}^-}[\ln (\sec t+\tan t)-\ln (1)]=\infty}\end{array}\)
The integral is Divergent
Evaluate \(\int_{0}^{3} \frac{d x}{x-1}\) if possible
\(x-1=0 \quad \rightarrow[x=1]\)
\(\int_{0}^{3} \frac{d x}{x-1}=\int_{0}^{1} \frac{d x}{x-1}+\int_{1}^{3} \frac{d x}{x-1}\)
\(\int_{0}^{1} \frac{d x}{x-1}=\lim _{t \rightarrow 1^-} \int_{0}^{t} \frac{d x}{x-1}=\lim _{t \rightarrow 1^-} \ln |x-1| ]_{0}^{t}\)
\(=\lim _{t \rightarrow {1}^-}[\ln |t-1|-\ln|-1 |]=\lim _{t \rightarrow1^-} \ln (1-t)=-\infty\)
The integral is divergent
show that \(\int_{0}^{\infty} e^{-x^{2}} d x\) is convergent
\(e^{-x} \le e^{-x^{2}} \rightarrow[0,1] \qquad e^{-x^{2}} \leq e^{-x} \rightarrow[1, \infty]\)
\(\int_{0}^{\infty} e^{-x^{2}} d x-\int_{0}^{1} e^{-x^{2}} d x+\int_{1}^{\infty} e^{-x^{2}} d x\)
\(\int_{1}^{\infty} e^{-x^{2}} d x\)
\(x \geq 1 \rightarrow x^{2} \geq x \rightarrow-x^{2} \leq-x\) so that \(e^{-x^{2}} \leq e^{-x}\)
\(\int_{1}^{\infty} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x}dx\) and \(g(x)=e^{-x^{2}}\)
in the comparision theorem we found \(\int_{1}^{\infty} e^{-x^{2}} d x\) is convergent so \(\int_{0}^{\infty} e^{-x^{2}} d x\)
is convergent too
No comments yet
Determine whether \(\int_{0}^{\pi / 2} \sec x d x\) converges or diverges
\(\int_{0}^{\pi / 2} \sec x d x=\ln |\sec x+\tan x| ]_{0}^{\pi / 2}\)
But \(\sec \left(\frac{\pi}{2}\right)=\infty \quad \Rightarrow\) integral is improper because it is discontinous at \(\frac{\pi}{2}\)
\(\int_{0}^{\pi / 2} \sec x d x=\lim _{t \rightarrow\left(\frac{\pi}{2}\right)^-} \int_{0}^{t} \sec x d x\)
\(=\lim _{t \rightarrow\left(\frac{\pi}{2}\right)^{-}}|\sec x+\tan x| ]_{0}^{t}\)
\(\begin{array}{l}{=\lim _{t \rightarrow \frac{\pi}{2}^-}[\ln (\sec t+\tan t)-\ln (1)]=\infty}\end{array}\)
The integral is Divergent
Evaluate \(\int_{0}^{3} \frac{d x}{x-1}\) if possible
\(x-1=0 \quad \rightarrow[x=1]\)
\(\int_{0}^{3} \frac{d x}{x-1}=\int_{0}^{1} \frac{d x}{x-1}+\int_{1}^{3} \frac{d x}{x-1}\)
\(\int_{0}^{1} \frac{d x}{x-1}=\lim _{t \rightarrow 1^-} \int_{0}^{t} \frac{d x}{x-1}=\lim _{t \rightarrow 1^-} \ln |x-1| ]_{0}^{t}\)
\(=\lim _{t \rightarrow {1}^-}[\ln |t-1|-\ln|-1 |]=\lim _{t \rightarrow1^-} \ln (1-t)=-\infty\)
The integral is divergent
show that \(\int_{0}^{\infty} e^{-x^{2}} d x\) is convergent
\(e^{-x} \le e^{-x^{2}} \rightarrow[0,1] \qquad e^{-x^{2}} \leq e^{-x} \rightarrow[1, \infty]\)
\(\int_{0}^{\infty} e^{-x^{2}} d x-\int_{0}^{1} e^{-x^{2}} d x+\int_{1}^{\infty} e^{-x^{2}} d x\)
\(\int_{1}^{\infty} e^{-x^{2}} d x\)
\(x \geq 1 \rightarrow x^{2} \geq x \rightarrow-x^{2} \leq-x\) so that \(e^{-x^{2}} \leq e^{-x}\)
\(\int_{1}^{\infty} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x}dx\) and \(g(x)=e^{-x^{2}}\)
in the comparision theorem we found \(\int_{1}^{\infty} e^{-x^{2}} d x\) is convergent so \(\int_{0}^{\infty} e^{-x^{2}} d x\)
is convergent too
No comments yet
Join the conversation