${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
Q5- Find \(\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}\)
\(\frac{d \sin x}{d x}=\cos x\)
\(\frac{d \cos x}{d x}=-\sin x\)
\(\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}=\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{-(-\sin x)}=\frac{\cos (\pi)}{\sin (\pi)}=\frac{-1}{0}=\infty\)
(1) \(\lim _{x \rightarrow \pi^{-}} \frac{\sin (x)}{1-\cos (x)}=\frac{\sin (\pi)}{1-\cos (\pi)}=\frac{0}{1-(-1)}=\frac{0}{1+1}\)
\(=\frac{0}{2}=0\)
Q6- Find \(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}\)
\(\tan (0)=0\)
\(\sec (0)=1\)
\(\frac{d \tan (x)}{d x}=\sec ^{2}(x)\)
\(\frac{d}{d x} \sec ^{2}(x)=2 \sec ^{2} x \tan x\)
(1) \(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\frac{\tan (0)-0}{0^{3}}= \frac{0-0}{0}=\frac{0}{0} \)$$
(2) \(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}\)
\(=\frac{\sec ^{2}(0)-1}{3(0)^{2}}=\frac{1-1}{0}=\frac{0}{0}\)
(3) \(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sec ^{2} x \tan x}{6 x}\)
\(=\frac{1}{3} \lim \frac{\sec ^{2} x \tan x}{x}\)
\(=\frac{1}{3} \lim _{x \rightarrow 0}\left(\sec ^{2} x\right) . \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)\)
\(\lim _{x \rightarrow 0} \sec ^{2}(x)=\sec ^{2}(0)=1\)
\(\lim _{x \rightarrow 0} \frac{\tan x}{x}=\frac{\tan \theta}{0}\)
\(=\frac{0}{0}\)
\(=\frac{1}{3} \cdot(1) \cdot \lim _{x \rightarrow 0} \frac{\sec ^{2} x}{1}=\frac{1}{3} \cdot \sec ^{2}(0)\)
\(=\frac{1}{3} \cdot(1)=\frac{1}{3}\)
Q7- Find \(\lim _{x \rightarrow 0^{+}} x \ln (x)\)
\(\ln \left(0^{+}\right)=-\infty\)
\(\frac{d \ln (x)}{d x}=\frac{1}{x}\)
(1) \(\lim _{x \rightarrow 0^{+}} x \ln (x)=(0) \ln (0)=0 \cdot(-\infty)\)
(2) \(\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\frac{\ln (0)}{\frac{1}{0}}=\frac{-\infty}{\infty} \)
(1) \(\frac{0}{0} , \frac{\infty}{\infty}\)
(2) \(1^{\infty} , 0^{0} , \infty^{0}\)
\(\infty-\infty,0(-\infty)\)
\(\frac{a}{b}\)
\(\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x}=\lim _{x \rightarrow 0^{+}}(-x)\)
\(=-(0)=0\)
Q8- Find \(\lim _{x \rightarrow \pi} \frac{\sin x}{\sqrt{x-\pi}}\)
\(\sin (\pi)=0\)
\(\frac{d \sin (x)}{d x}=\cos x\)
(1) \(\lim _{x \rightarrow \pi^{+}} \frac{\sin x}{\sqrt{x-\pi}}=\frac{\sin (\pi)}{\sqrt{\pi-\pi}}=\frac{0}{\sqrt{0}}=\frac{0}{0}\)
(2) \(\lim _{x \rightarrow \pi^{+}} \frac{\sin x}{\sqrt{x-\pi}}=\lim _{x \rightarrow \pi^{+}} \frac{\cos (x)}{\frac{1}{2 \sqrt{x_{-} \pi}}}=\lim _{x \rightarrow \pi^{+}} \frac{\cos (x)}{\frac{1}{2 \cdot(x-\pi)^{\frac{1}{2}}}}\)
\(\begin{array}{l}{=\lim _{x \rightarrow \pi^{+}} 2 \cdot \cos x \cdot(x-\pi)^{\frac{1}{2}}=2 \cos (\pi) \cdot(\pi-\pi)^{\frac{1}{2}}}\end{array} \)
\(=0\)
عدد حقيقي
No comments yet
Q5- Find
\(\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}\)
\(\frac{d \sin x}{d x}=\cos x\)
\(\frac{d \cos x}{d x}=-\sin x\)
\(\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}=\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{-(-\sin x)}=\frac{\cos (\pi)}{\sin (\pi)}=\frac{-1}{0}=\infty\)
(1)
\(\lim _{x \rightarrow \pi^{-}} \frac{\sin (x)}{1-\cos (x)}=\frac{\sin (\pi)}{1-\cos (\pi)}=\frac{0}{1-(-1)}=\frac{0}{1+1}\)
\(=\frac{0}{2}=0\)
Q6- Find
\(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}\)
\(\tan (0)=0\)
\(\sec (0)=1\)
\(\frac{d \tan (x)}{d x}=\sec ^{2}(x)\)
\(\frac{d}{d x} \sec ^{2}(x)=2 \sec ^{2} x \tan x\)
(1)
\(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\frac{\tan (0)-0}{0^{3}}= \frac{0-0}{0}=\frac{0}{0} \)$$
(2)
\(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}\)
\(=\frac{\sec ^{2}(0)-1}{3(0)^{2}}=\frac{1-1}{0}=\frac{0}{0}\)
(3)
\(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sec ^{2} x \tan x}{6 x}\)
\(=\frac{1}{3} \lim \frac{\sec ^{2} x \tan x}{x}\)
\(=\frac{1}{3} \lim _{x \rightarrow 0}\left(\sec ^{2} x\right) . \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)\)
\(\lim _{x \rightarrow 0} \sec ^{2}(x)=\sec ^{2}(0)=1\)
\(\lim _{x \rightarrow 0} \frac{\tan x}{x}=\frac{\tan \theta}{0}\)
\(=\frac{0}{0}\)
\(=\frac{1}{3} \cdot(1) \cdot \lim _{x \rightarrow 0} \frac{\sec ^{2} x}{1}=\frac{1}{3} \cdot \sec ^{2}(0)\)
\(=\frac{1}{3} \cdot(1)=\frac{1}{3}\)
Q7- Find
\(\lim _{x \rightarrow 0^{+}} x \ln (x)\)
\(\ln \left(0^{+}\right)=-\infty\)
\(\frac{d \ln (x)}{d x}=\frac{1}{x}\)
(1)
\(\lim _{x \rightarrow 0^{+}} x \ln (x)=(0) \ln (0)=0 \cdot(-\infty)\)
(2)
\(\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\frac{\ln (0)}{\frac{1}{0}}=\frac{-\infty}{\infty} \)
(1)
\(\frac{0}{0} , \frac{\infty}{\infty}\)
(2)
\(1^{\infty} , 0^{0} , \infty^{0}\)
\(\infty-\infty,0(-\infty)\)
\(\frac{a}{b}\)
\(\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x}=\lim _{x \rightarrow 0^{+}}(-x)\)
\(=-(0)=0\)
Q8- Find
\(\lim _{x \rightarrow \pi} \frac{\sin x}{\sqrt{x-\pi}}\)
\(\sin (\pi)=0\)
\(\frac{d \sin (x)}{d x}=\cos x\)
(1)
\(\lim _{x \rightarrow \pi^{+}} \frac{\sin x}{\sqrt{x-\pi}}=\frac{\sin (\pi)}{\sqrt{\pi-\pi}}=\frac{0}{\sqrt{0}}=\frac{0}{0}\)
(2)
\(\lim _{x \rightarrow \pi^{+}} \frac{\sin x}{\sqrt{x-\pi}}=\lim _{x \rightarrow \pi^{+}} \frac{\cos (x)}{\frac{1}{2 \sqrt{x_{-} \pi}}}=\lim _{x \rightarrow \pi^{+}} \frac{\cos (x)}{\frac{1}{2 \cdot(x-\pi)^{\frac{1}{2}}}}\)
\(\begin{array}{l}{=\lim _{x \rightarrow \pi^{+}} 2 \cdot \cos x \cdot(x-\pi)^{\frac{1}{2}}=2 \cos (\pi) \cdot(\pi-\pi)^{\frac{1}{2}}}\end{array} \)
\(=0\)
عدد حقيقي
No comments yet
Join the conversation