Use cylindrical coordinates to Evaluate $$\iiint_{E} \sqrt{x^{2}+y^{2}} d V$$
where $$E$$ is the region that lies inside the cylinder
$$x^{2}+y^{2}=16$$ and between the planes $$z=-5$$ and $$z=4$$
$$x^{2}+y^{2}=16=r^{2}$$
$$r=4$$
$$\theta=0 \rightarrow 2 \pi$$
$$z=-5 \rightarrow 4$$
$$r=0 \rightarrow r=4$$
$$\iiint \sqrt{x^{2}+y^{2}}=\sqrt {r^{2}} $$
$$d v=d x d y d z$$
$$d v=r d \theta d r dz$$
$$dx dy dz \rightarrow r d \theta d r d z$$
$$\int_{-4}^{5} \int_{0}^{2 \pi} \int_{0}^{4} r \cdot r d r d \theta d z \Rightarrow r^{2} $$
$$=\left.\int_{-4}^{5} \int_{0}^{2 \pi} r^{3} / 3\right|_{0} ^{4} d \theta d z$$
Use cylindrical coordinates to Evaluate $$\iiint_{E} \sqrt{x^{2}+y^{2}} d V$$
where $$E$$ is the region that lies inside the cylinder
$$x^{2}+y^{2}=16$$ and between the planes $$z=-5$$ and $$z=4$$
$$x^{2}+y^{2}=16=r^{2}$$
$$r=4$$
$$\theta=0 \rightarrow 2 \pi$$
$$z=-5 \rightarrow 4$$
$$r=0 \rightarrow r=4$$
$$\iiint \sqrt{x^{2}+y^{2}}=\sqrt {r^{2}} $$
$$d v=d x d y d z$$
$$d v=r d \theta d r dz$$
$$dx dy dz \rightarrow r d \theta d r d z$$
$$\int_{-4}^{5} \int_{0}^{2 \pi} \int_{0}^{4} r \cdot r d r d \theta d z \Rightarrow r^{2} $$
$$=\left.\int_{-4}^{5} \int_{0}^{2 \pi} r^{3} / 3\right|_{0} ^{4} d \theta d z$$
$$=\int_{0}^{2 \pi}\left(\frac{4^{3}}{3}\right) z|_{-4}^{5} d \theta=\frac{4^{3}}{3} * 9 * 2 \pi=384 \pi$$
$$\int d \theta = \theta |_{0}^{2 \pi} $$
No comments yet
Join the conversation