${ message }

Your cart is empty

Discount (${discount_percentage}%) : - ${discount}KD

Need Help?

How good was the graphics ?

How well did you understood the video ?

Was the video helpful?

Was the notes helpful?

Sign up to try our free practice

KD

19.500

1 month

Add to cart

39.500

4 months

Subscribe to Calculus B

Practice (Free)

Practice

الـ(Integration) هو عملية عكسية للـ (differentiation)

اذا كان f,g (differentiable functions) فان

\(\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\)

in the notation for indefinite integrals this equation becomes

\( \int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) dx \)

وهذه الصيغة تُسمى بـ (the formula for integration by parts)

يوجد ايضا طريقة اخرى فى الـ (integration by parts)

نفرض ان u = f(x) و v = g(x) ثم عمل differentiation لـ u,v هنحصل على

du = f^{'}(x) و dv = g^{'}(x)

اذن :

\(\int u d v=u v-\int v d u\)

No comments yet

الـ(Integration) هو عملية عكسية للـ (differentiation)

اذا كان f,g (differentiable functions) فان

\(\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\)

in the notation for indefinite integrals this equation becomes

\( \int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) dx \)

وهذه الصيغة تُسمى بـ (the formula for integration by parts)

يوجد ايضا طريقة اخرى فى الـ (integration by parts)

نفرض ان u = f(x) و v = g(x) ثم عمل differentiation لـ u,v هنحصل على

du = f

^{'}(x) و dv = g^{'}(x)اذن :

\(\int u d v=u v-\int v d u\)

No comments yet

## Join the conversation