Need Help?

Subscribe to Physics 2

Subscribe
  • Notes
  • Comments & Questions

$$
\begin{array}{l}{\text { A closely wound, circular coil with radius } 2.40 \mathrm{cm} \text { has }} \\ {800 \text { turns. (a) What must the current in the coil be if the magnetic }} \\ {\text { field at the center of the coil is } 0.0580 \mathrm{T} \text { ? (b) At what distance } x} \\ {\text { from the center of the coil, on the axis of the coil, is the magnetic }} \\ {\text { field half its value at the center? }}\end{array}
$$

$$
X=0, \quad B_ x=\frac{M_{0} N I}{2 a}
$$

(a) $$
\rightarrow I=\frac{2 a B_{x}}{M_{0} N}=\frac{2(0.024)(0.058)}{4 \pi * 10^{-7} * 800}
$$

$$
=2.77 \mathrm{A}
$$

(b) $$
B_{x}=\frac{M_{0} N I a^{2}}{2\left(x^{2}+a^{2}\right)^{3/2}}=
$$$$
\left(\frac{M_{0} NI }{2 a}\right)\left(\frac{a^{3}}{\left(x^{2}+a^{2}\right)^{3 / 2}}\right)
$$$$
=B_{c}\left(\frac{a^{3}}{\left(x^{2}+a^{2}\right)^{3/2}}\right)
$$

$$
B_ x=\frac{1}{2} B_c
$$$$\quad \rightarrow
\frac{1}{2} B_ c=
$$$$
B_ c\left(\frac{a^{3}}{\left(x^{2}+a^{2}\right)^{3/2} }\right)
$$

\(∴ \quad \frac{1}{2}=\frac{a^{3}}{\left(x^{2}+a^{2}\right)^{3 / 2}} \rightarrow\left(x^{2}+a^{2}\right)^{3}=4 a^{6} \rightarrow x=0.084 m \)

$$
\begin{array}{l}{\text { A closely wound, circular coil with a diameter of } 4.00 \mathrm{cm}} \\ {\text { has } 600 \text { turns and carries a current of } 0.500 \mathrm{A} \text { . What is the magni- }} \\ {\text { tude of the magnetic field (a) at the center of the coil and (b) at a }} \\ {\text { point on the axis of the coil } 8.00 \mathrm{cm} \text { from its center? }}\end{array}
$$

(a) $$
B_{\text { canter }}=\frac{M_{0} N I}{2 a}
$$

$$
=\frac{4 \pi * 10^{-7} * 600*0.5}{2(0.02)}=9.42*10^{-3} \mathrm{T}
$$

(b) $$
B(x)=
$$$$
=\frac{M_{0} N I{a}^{2}}{2\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}
$$

$$
=\frac{4 \pi*10^{-7} * 600 * 0.5*0.02^{2}}{2\left(0.08^{2}+0.02^{2}\right)^{3 / 2}}=1.34*10^{-4} T
$$

No comments yet

Join the conversation

Join Notatee Today!