Determine the moment of the force about point \(O.\)
\(
\sum M_{0}=100\left(\frac{4}{5}\right)(2)
\)
\(
+100 \left(\frac{3}{5}\right)(5)
\)
\(
=460 \mathrm{N.m}
\)
If the man at \(B\) exerts a force of \(P=150 \mathrm{N}\) on his , determine the magnitude of the force \(\mathbf{F}\) the man at \(C\) must exert to prevent the pole from rotating, i.e., so the resultant moment about \(A\) of both forces is zero.
In order to pull out the nail at \(B,\) the force \(\mathbf{F}\) exerted on the handle of the hammer must produce a clockwise moment of \(60 \mathrm{N} \cdot \mathrm{m}\) about point \(A\) . Determine the required magnitude of force \(\mathbf{F}\) .
\(
\sum M_{A}=F \cos 30(0.45)
\)
\(
+F \sin 30(0.125)=60
\)
Solver\(\longrightarrow\)\(
F \cos 30(0.45)+F \sin 30(0.125)=60
\)
Determine the moment of the force about point \(O.\)
\( \sum M_{0}=100\left(\frac{4}{5}\right)(2) \)
\( +100 \left(\frac{3}{5}\right)(5) \)
\( =460 \mathrm{N.m} \)
If the man at \(B\) exerts a force of \(P=150 \mathrm{N}\) on his , determine the magnitude of the force \(\mathbf{F}\) the man at \(C\) must exert to prevent the pole from rotating, i.e., so the resultant moment about \(A\) of both forces is zero.
\( \sum M_{A}=0 \)
\( -F\left(\frac{4}{5}\right)(3 \cdot 6)+P \cos (45)(1.8+3.6)=0 \)
\( ∴ F=198 \cdot 8 N \)
In order to pull out the nail at \(B,\) the force \(\mathbf{F}\) exerted on the handle of the hammer must produce a clockwise moment of \(60 \mathrm{N} \cdot \mathrm{m}\) about point \(A\) . Determine the required magnitude of force \(\mathbf{F}\) .
\( \sum M_{A}=F \cos 30(0.45) \)
\( +F \sin 30(0.125)=60 \)
Solver\(\longrightarrow\) \( F \cos 30(0.45)+F \sin 30(0.125)=60 \)
\(∴ F=132.7 N \)
No comments yet
Join the conversation