Need Help?

  • Notes
  • Comments & Questions

Find the first partial derivatives of the function.
$$f(x, y)=x^{2}+5 x y^{3}$$

$$f(x, y)=x^{2}+5 x y^{3} $$

$$f_{x}(x, y)=\frac{\partial}{\partial x}[f(x, y)]=2 x+5 y^{3} $$

$$f_{y}\left(x, y\right)=\frac{2}{2 y}\left[f\left(x, y\right)\right]=5 \times 3 x y^{2}=15 x y^{2}$$

Find the first partial derivatives of the function.
$$f(x, y, z)=x^{3} y z^{2}+2 y z$$

$$f(x, y, z)=x^{3} y z^{2}+2 y z$$

$$f_{x}\left(x, y, z\right)=\frac{\partial}{\partial x} f\left(x, y, z\right)=yz^{2}\left(3 x^{2}\right)=3 x^{2} y z^{2}$$

$$f_{y}(x, y, z)=\frac{\partial}{\partial y} f(x, y, z)=x^{3} z^{2}+2 z$$

$$f_{z}(x, y, z)=\frac{\partial}{\partial z} f(x, y, z)=x^{3} y(2 z)+2 y$$
$$=2 x^{3} y z + 2 y$$
Find all the second partial derivatives.
$$f(x, y)=x^{4} y-2 x^{3} y^{2}$$

$$f(x, y)=x^{4} y-2 x^{3} y^{2}$$

$$f_{x}\left({x, y}\right)=4 x^{3} y-6 x^{2} y^{2} $$

$$f_{y}\left(x, y\right)=x^{4}-4 x^{3} y$$

$$f_{x x}\left(x, y\right)=\frac{\partial}{\partial x} f_{x}\left(x, y\right)=12 x^{2} y-12 x y^{2}$$

$$f_{y y} (x, y)=\frac{\partial}{\partial y} f_{y} (x, y)=-4 x^{3}$$

$$f_{x y}(x, y)=\frac{\partial}{\partial y} f_{x}(x, y)=$$

$$=4 x^{3}-6 x^{2}[2 y]=4 x^{3}-12x^{2} y$$

$$f_{x, y} \frac{\partial}{\partial x}=\frac{\partial}{\partial x} f(x, y)$$

$$=\frac{\partial}{\partial x}\left[x^{4}-4 x^{3} y\right]$$

$$f_{y x} \left(x, y\right)=4 x^{3}-12 x^{2} y$$

No comments yet

Join the conversation

Join Notatee Today!