${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How good was the graphics ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
الـ power series تكون على الشكل
\(\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots\)
حيث x متغير و حدود الـ cn ثوابت وتُسمى بـ the coefficients of the series
الـ power series من الممكن ان تكون converge لبعض قيم اكس و diverge لبعض القيم الاخرى
الـ sum للـ series عبارة عن دالة
\(f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots\)
whose domain is the set of all \(x\) for which the series converges.
Theorem For a given power series \(\sum_{n=0}^{\infty} c_{n}(x-a)^{n},\) there are only three
possibilities:
(i) The series converges only when \(x=a\) .
(ii) The series converges for all \(x\) .
(iii) The series converges for all \(x\) .
(iii) There is a positive number \(R\) such that the series converges if \(|x-a|<R\)
and diverges if \(|x-a|>R\) .
No comments yet
الـ power series تكون على الشكل
\(\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots\)
حيث x متغير و حدود الـ cn ثوابت وتُسمى بـ the coefficients of the series
الـ power series من الممكن ان تكون converge لبعض قيم اكس و diverge لبعض القيم الاخرى
الـ sum للـ series عبارة عن دالة
\(f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots\)
whose domain is the set of all \(x\) for which the series converges.
Theorem For a given power series \(\sum_{n=0}^{\infty} c_{n}(x-a)^{n},\) there are only three
possibilities:
(i) The series converges only when \(x=a\) .
(ii) The series converges for all \(x\) .
(iii) The series converges for all \(x\) .
(iii) There is a positive number \(R\) such that the series converges if \(|x-a|<R\)
and diverges if \(|x-a|>R\) .
No comments yet
Join the conversation