Need Help?

Subscribe to Statics

Subscribe
  • Notes
  • Comments & Questions

Draw the shear and moment diagrams for the beam.

\( +\uparrow \sum F_{y}=0 \rightarrow A_ y-100= 0 \longrightarrow A_ y=100 \mathrm{kN} \uparrow \)

\( \sum M_{A}=0 \rightarrow M_{A}-800-100(10)=0 \)

\(∴ M_{A}=1800 \mathrm{kN.m} \)

\( 0 \leq x \leq 5 \)

 

\( +\uparrow \sum F_ y=0 \)

\( A_y-V=0 ∴\quad\longrightarrow A_ y=V \)

\(∴ V=100 k N \uparrow\)

\( \sum M=0 \longrightarrow M+1800-100\ (x)=0 \)

\( ∴ M=100 \times -1800 \leftarrow \)

\( 5 \leq x \leq 10 \)

\( +\uparrow \sum F _y=0 \quad \longrightarrow V-100=0\longrightarrow V=100 kN \uparrow \)

\( \sum M=0 \quad\longrightarrow \quad-M-100(10-x)=0 \ \quad \longrightarrow \quad M=100 \times -1000 \ \leftarrow \)

Draw the shear and moment diagrams for the beam.

\( +\uparrow \sum F_ y=0 \)

from Symmetry &

\( A_ y=C_ y= 4.5 kN \uparrow \)

\( A_{ shear }=\frac{2}{3} * 3 * 4.5=9 kN.m \)

No comments yet

Join the conversation

Join Notatee Today!