• عربي

Need Help?

Subscribe to Differential Equation

###### \${selected_topic_name}
• Notes
• Comments & Questions

$t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0, \quad t>0, \quad y_{1}(t)=t$

$y_{2}(t)=v(t) y_{1}(t) \quad y=v t$

$y^{\prime}=v^{\prime} t+v$

$y^{\prime \prime}=v^{\prime \prime} t+v^{\prime}+v^{\prime}$

$=v^{\prime \prime} t+2 v^{\prime}$

$t^{2}\left(v^{\prime \prime} t+2 v^{\prime}\right)+2 t\left(v^{\prime} t+v\right)-2 v t=0$

$t^{3} v^{\prime \prime}+2 t^{2} v^{\prime}+2 t^{2} v^{\prime}+2 t v-2 v t=0$

$t^{3} v^{\prime \prime}+4 t^{2} v^{\prime}=0$

$w=v^{\prime}, w^{\prime}=v^{\prime \prime} \quad t^{3} w^{\prime}+4 t^{2} w=0$

$t w^{\prime}+4 w=0$

$t w^{\prime}=-4 w$

$t \frac{d w}{d t}=-4 w$

$-\frac{1}{4} \frac{d w}{w}=\frac{d t}{t}$

$\frac{-1}{4} \ln |w|=\ln |t|+c$

$e^{-1 / 4 \ln |w|}=e^{\ln |t|+c}$

$\ln x^{n}=n \ln x$

$w^{-1 / 4}=e^{c} \cdot t$

$e^{c}=c_{1}$

$\left(v^{\prime}\right)^{-1 / 4}=c_{1} t$

$v^{\prime}=\left(c_{1} t\right)^{-4}$

$c_{1}^{-4}=c_{2}$

$v^{\prime}=c_{2} t^{-4} \quad v=\frac{c_{2} t^{-3}}{-3}+c_{3}$

$c_{2} /-3=c_{4}$

$v=c_{4} t^{-3}+c_{3}$

$y_{2}=c_{4} t^{-2}+c_{3} t$

Reduction of order

$4 y^{\prime \prime}+17 y^{\prime}+4 y=0$

$4 r^{2}+17 r+4=0$

$r_{1}=-1 / 4, \quad r_{2}=-1$

$y=c_{1} e^{{-1/4} t}+c_{2} e^{-4 t}$

$y^{\prime \prime}-2 y^{\prime}+10 y=0$

$r^{2}-2 r+10=0$

$r=1 \pm 3 i \quad \lambda=1, \mu=3$

$y=c_{1} e^{t} \cos 3 t+c_{2} e^{t} \sin 3 t$

$9 y^{\prime \prime}+6 y^{\prime}+y=0$

$9 r^{2}+6 r+1=0$

$r=-1 / 3=r_{1}=r_{2}$

$y=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3}$