${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
Find \(\lim _{n \rightarrow \infty} \frac{n}{n+1}\)
\(\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim \frac{\infty}{\infty+1}=\frac{\infty}{\infty}\)
\(\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n(1)}{n\left(1+\frac{1}{n}\right)}\)
\(=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=\frac{1}{1+\frac{1}{\infty}}=\frac{1}{1+0}=1\)
is convergent
Find \(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}\)
\(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\frac{\ln (\infty)}{\infty}=\frac{\infty}{\infty}\)
But we can't apply L'hopital Rule on (n) because it is discrete
so we define \(f(x)=\frac{\ln (x)}{x}\)
\(\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}\)
\(\frac{1}{\infty}=0\)
\(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0\)
Evalute \(\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}\) if it exists
\(\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n}=0\)
\(∴ \lim _{n \rightarrow \infty}\left(\frac{(-1)^{n}}{n}\right)=0\)
Show that the sequence \(\left\{\frac{3}{n+5}\right\}\) is decreasing
Decresing \(\rightarrow a_{n+1}<a_ n\)
\(\frac{3}{n+1+5}<\frac{3}{n+5}\)
\(\frac{3}{n+6}<\frac{3}{n+5}\) True
\(\left\{\frac{3}{n+5}\right\}\) is decreasing
or \(f(x)=\frac{3}{x+5} \rightarrow f^{\prime}(x)=\frac{-3}{(x+5)^{2}}<0\)
Show that the sequence \(a_{n}=\frac{n}{n^{2}+1}\) is decreasing
\(\{a n\}\) is decreasing \(\Rightarrow a_{n+1}<a_{n}\)
\(\frac{n+1}{(n+1 )^{2}+1}<\frac{n}{n^{2}+1}\)
\((n+1)\left(n^{2}+1\right)<n\left((n+1)^{2}+1\right)\)
\(n^{3}+n+n^{2}+1<n\left(n^{2}+2 n+1+1\right)\)
\(n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n\)
\(1<n^{2}+n\)
\(n^{2}+n>1\) is true
\(a_ {n+1}<a_{n}\)
\(\left\{a_{n}\right\}\) is decreasing
Find the limit \(\lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{2^{n}}\)
we knew that \(0 \le \cos ^{2} n \le 1\)
\(\frac{0}{2^{n}} \leq \frac{ \cos ^{2} n}{2^{n}} \leq \frac{1}{2^{n}}\)
\(0 \leq \frac{\cos ^{2} n}{2^{n}} \leq \frac{1}{2^{n}}\)
\(\lim _{n \rightarrow \infty} 0=0\)
\(\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=\frac{1}{2^{\infty}}=\frac{1}{\infty}=0\)
\(\lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{2^{n}}=0\) by squeeze theorem
No comments yet
Find \(\lim _{n \rightarrow \infty} \frac{n}{n+1}\)
\(\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim \frac{\infty}{\infty+1}=\frac{\infty}{\infty}\)
\(\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n(1)}{n\left(1+\frac{1}{n}\right)}\)
\(=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=\frac{1}{1+\frac{1}{\infty}}=\frac{1}{1+0}=1\)
is convergent
Find \(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}\)
\(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\frac{\ln (\infty)}{\infty}=\frac{\infty}{\infty}\)
But we can't apply L'hopital Rule on (n) because it is discrete
so we define \(f(x)=\frac{\ln (x)}{x}\)
\(\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}\)
\(\frac{1}{\infty}=0\)
\(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0\)
Evalute \(\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}\) if it exists
\(\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n}=0\)
\(∴ \lim _{n \rightarrow \infty}\left(\frac{(-1)^{n}}{n}\right)=0\)
Show that the sequence \(\left\{\frac{3}{n+5}\right\}\) is decreasing
Decresing \(\rightarrow a_{n+1}<a_ n\)
\(\frac{3}{n+1+5}<\frac{3}{n+5}\)
\(\frac{3}{n+6}<\frac{3}{n+5}\) True
\(\left\{\frac{3}{n+5}\right\}\) is decreasing
or \(f(x)=\frac{3}{x+5} \rightarrow f^{\prime}(x)=\frac{-3}{(x+5)^{2}}<0\)
\(\left\{\frac{3}{n+5}\right\}\) is decreasing
Show that the sequence \(a_{n}=\frac{n}{n^{2}+1}\) is decreasing
\(\{a n\}\) is decreasing \(\Rightarrow a_{n+1}<a_{n}\)
\(\frac{n+1}{(n+1 )^{2}+1}<\frac{n}{n^{2}+1}\)
\((n+1)\left(n^{2}+1\right)<n\left((n+1)^{2}+1\right)\)
\(n^{3}+n+n^{2}+1<n\left(n^{2}+2 n+1+1\right)\)
\(n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n\)
\(1<n^{2}+n\)
\(n^{2}+n>1\) is true
\(a_ {n+1}<a_{n}\)
\(\left\{a_{n}\right\}\) is decreasing
Find the limit \(\lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{2^{n}}\)
we knew that \(0 \le \cos ^{2} n \le 1\)
\(\frac{0}{2^{n}} \leq \frac{ \cos ^{2} n}{2^{n}} \leq \frac{1}{2^{n}}\)
\(0 \leq \frac{\cos ^{2} n}{2^{n}} \leq \frac{1}{2^{n}}\)
\(\lim _{n \rightarrow \infty} 0=0\)
\(\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=\frac{1}{2^{\infty}}=\frac{1}{\infty}=0\)
\(\lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{2^{n}}=0\) by squeeze theorem
No comments yet
Join the conversation