Need Help?

Subscribe to Circuit

Subscribe
Inductance, Capacitance, And Mutual Inductance 65:40
  • Notes
  • Comments & Questions

$$
\text { Find the equivalent inductance between a, b. }
$$

$$
L_{e q}=\frac{L_{1} L_{2}}{L_{1}+1_{2}}=\frac{30 * 20}{30+20}=12 H
$$

$$
L_{eq }=L_{1}+L_{2}=8+12=20 \mathrm{H}
$$

$$
L_{eq}=\frac{L_1 L_2}{L_1+ L_2}=\frac{20* 80}{20+80}=16 H
$$

$$
L_{eq}=l_1+l_{2}=14+16=30
$$

$$
L_{eq}=\frac{l_1 l_2}{l_{1}+l_2}= \frac{30 * 60}{30+60}
$$

$$
L_{eq}= 20 \mathrm{H}
$$

$$
L_{eq}=l_1+l_2=20+10=30
$$

$$
L_{eq}= \frac{l_1 l_2}{l_1+l_2}
$$

$$
L_{eq} =\frac{30*15}{30+15}
$$

$$
L_{eq}=10 \mathrm{H}
$$

$$
L_{eq} =l_{1}+l_2
$$

$$
l_{eq}=5+10=15 \mathrm{H}
$$

 

No comments yet

Join the conversation

Join Notatee Today!