${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
Test the convergence of \(\sum_{n=1}^{\infty} 3(4)^{1-n}(3)^{n-2}\) and find its sum if it converges.
\(a n=3(4)^{1-n}(3)^{n-2}=3 \cdot \frac{4^{1}}{4^{n}} \cdot \frac{3^{n}}{3^{2}}=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^{n}\)
\(\sum_{n=1}^{\infty} 3 \cdot(4)^{1-n}(3)^{n-2}=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^{n}\)
Geometric series with \(r=\frac{3}{4}<1\)
Convergent series
\(a=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^{n}=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^1=1\)
\(Sum=\frac{a}{1-r}=\frac{1}{1-3 / 4}=4\)
Let \(x=0 . \overline{23}\) express x as the sum of a geometric series and find the integrals m & n
such that \(x=\frac{m}{n}\)
\(x=0 . \overline{23}=0.232323 \dots\)
\(=0.23+0.0023+0.000023 \cdots\)
\(=23\left(10^{-2}\right)+23\left(10^{-4}\right)+23\left(10^{-6}\right) \dots\)
\(=23\left(10^{-2}\right)^{1}+23\left(10^{-2}\right)^{2}+23\left(10^{-2}\right)^{3} \cdots\)
\(x=\sum_{n=1}^{\infty} 23\left(10^{-2}\right)^{n}=\sum_{n=1}^{\infty} \frac{23}{\left(10^{2}\right)^{n}}=\sum_{n=1}^{\infty} \frac{23(1)}{(100)^{n}}\)
\(x=\sum_{n=1}^{\infty} 23 \cdot\left(\frac{1}{100}\right)^{n} \Rightarrow r=\frac{1}{100}<1\)
\(a=23 \cdot\left(\frac{1}{100}\right)^{1}=\frac{23}{100}\)
\(x= {sum}=\frac{a}{1-r}=\frac{23 / 100}{1-1 / 100}=\frac{23}{100-1}=\frac{23}{99}\)
\(x=\frac{23= m}{99= n}\)
m = 23
n = 99
Test the convergence \(\sum_{n=1}^{\infty} \ln \left(\frac{7 n+1}{2 n+3}\right)\)
\(a n=\ln \left(\frac{7 n+1}{2 n+3}\right)\)
\(\lim _{n \rightarrow \infty} a n=\lim _{n \rightarrow \infty}\ln\left (\frac{7 n+1}{2 n+3}\right)=\frac{\infty}{\infty}\)
\(\ln \lim _{n \rightarrow \infty}\left(\frac{7 n+1}{2 n+3}\right)=\ln \lim _{n \rightarrow \infty}\left(\frac{7 x+1}{2 x+3}\right)=\ln \lim _{n \rightarrow \infty}\left(\frac{7}{2}\right)\)
\(\ln \lim _{n \rightarrow \infty}\left(\frac{7 n+1}{2 n+3}\right)=\ln \lim _{n \rightarrow \infty}\left(\frac{7}{2}\right)=\ln \left(\frac{7}{2}\right)\)
\(\lim _{n \rightarrow \infty} a_{n}=\frac{7}{2} \neq 0\)
Divergent test for divergence or by Nth term test (N.T.T)
Test for convergence $\(\sum_{n=1}^{\infty} \sqrt[3]{\frac{2 n+5}{16 n-3}}\)
$$\(a n=\sqrt[3]{\frac{2 n+5}{16 n-3}}\)$$
\(\lim _{n \rightarrow \infty} a n=\lim _{n \rightarrow \infty} \sqrt[3]{\frac{2 n+5}{16 n-3}}=\sqrt[3]{\lim _{n \rightarrow \infty} \frac{2 n+5}{16 n-3}}=\frac{\infty}{\infty}\)
\(=\sqrt[3]{\lim _{n \rightarrow \infty} \frac{2}{16}}=\sqrt[3]{\frac{1}{8}}=\frac{1}{2} \neq 0\)
The series is Divergent by N.T.T
or Test is Divergence
No comments yet
Test the convergence of \(\sum_{n=1}^{\infty} 3(4)^{1-n}(3)^{n-2}\) and find its sum if it converges.
\(a n=3(4)^{1-n}(3)^{n-2}=3 \cdot \frac{4^{1}}{4^{n}} \cdot \frac{3^{n}}{3^{2}}=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^{n}\)
\(\sum_{n=1}^{\infty} 3 \cdot(4)^{1-n}(3)^{n-2}=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^{n}\)
Geometric series with \(r=\frac{3}{4}<1\)
Convergent series
\(a=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^{n}=\frac{4}{3} \cdot\left(\frac{3}{4}\right)^1=1\)
\(Sum=\frac{a}{1-r}=\frac{1}{1-3 / 4}=4\)
Let \(x=0 . \overline{23}\) express x as the sum of a geometric series and find the integrals m & n
such that \(x=\frac{m}{n}\)
\(x=0 . \overline{23}=0.232323 \dots\)
\(=0.23+0.0023+0.000023 \cdots\)
\(=23\left(10^{-2}\right)+23\left(10^{-4}\right)+23\left(10^{-6}\right) \dots\)
\(=23\left(10^{-2}\right)^{1}+23\left(10^{-2}\right)^{2}+23\left(10^{-2}\right)^{3} \cdots\)
\(x=\sum_{n=1}^{\infty} 23\left(10^{-2}\right)^{n}=\sum_{n=1}^{\infty} \frac{23}{\left(10^{2}\right)^{n}}=\sum_{n=1}^{\infty} \frac{23(1)}{(100)^{n}}\)
\(x=\sum_{n=1}^{\infty} 23 \cdot\left(\frac{1}{100}\right)^{n} \Rightarrow r=\frac{1}{100}<1\)
Convergent series
\(a=23 \cdot\left(\frac{1}{100}\right)^{1}=\frac{23}{100}\)
\(x= {sum}=\frac{a}{1-r}=\frac{23 / 100}{1-1 / 100}=\frac{23}{100-1}=\frac{23}{99}\)
\(x=\frac{23= m}{99= n}\)
m = 23
n = 99
Test the convergence \(\sum_{n=1}^{\infty} \ln \left(\frac{7 n+1}{2 n+3}\right)\)
\(a n=\ln \left(\frac{7 n+1}{2 n+3}\right)\)
\(\lim _{n \rightarrow \infty} a n=\lim _{n \rightarrow \infty}\ln\left (\frac{7 n+1}{2 n+3}\right)=\frac{\infty}{\infty}\)
\(\ln \lim _{n \rightarrow \infty}\left(\frac{7 n+1}{2 n+3}\right)=\ln \lim _{n \rightarrow \infty}\left(\frac{7 x+1}{2 x+3}\right)=\ln \lim _{n \rightarrow \infty}\left(\frac{7}{2}\right)\)
\(\ln \lim _{n \rightarrow \infty}\left(\frac{7 n+1}{2 n+3}\right)=\ln \lim _{n \rightarrow \infty}\left(\frac{7}{2}\right)=\ln \left(\frac{7}{2}\right)\)
\(\lim _{n \rightarrow \infty} a_{n}=\frac{7}{2} \neq 0\)
Divergent test for divergence or by Nth term test (N.T.T)
Test for convergence $\(\sum_{n=1}^{\infty} \sqrt[3]{\frac{2 n+5}{16 n-3}}\)
$$\(a n=\sqrt[3]{\frac{2 n+5}{16 n-3}}\)$$
\(\lim _{n \rightarrow \infty} a n=\lim _{n \rightarrow \infty} \sqrt[3]{\frac{2 n+5}{16 n-3}}=\sqrt[3]{\lim _{n \rightarrow \infty} \frac{2 n+5}{16 n-3}}=\frac{\infty}{\infty}\)
\(=\sqrt[3]{\lim _{n \rightarrow \infty} \frac{2}{16}}=\sqrt[3]{\frac{1}{8}}=\frac{1}{2} \neq 0\)
The series is Divergent by N.T.T
or Test is Divergence
No comments yet
Join the conversation