${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Differential Equation
Practice (Free)
Practice
Show that $$\Gamma(1)=1$$
$$\Gamma(n+1)=\int_{0}^{\infty} e^{-t} t^{n} d t$$
$$\Gamma(1)=\Gamma(0+1)=\int_{0}^{\infty} e^{-x} x^{0} d x$$
$$=\int_{0}^{\infty} e^{-x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \overline{e}^{x} d x$$
$$\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x} d x=\lim _{b \rightarrow \infty}\left[-e^{-x}\right]_{0}^{b}=\lim _{b \rightarrow \infty}\left[-e^{-b}-(-e^{0})\right]$$
$$=\lim _{b \rightarrow \infty}\left[-e^{-b}+1\right]=-e^{-\infty}+1=0+1=1$$
If $$n$$ is a positive integer then $$\Gamma(n+1)=n !$$
$$\Gamma(n+1)=n \Gamma(n)$$
$$=n \Gamma(n+1-1)$$
$$=n \Gamma(n-1+1)$$
$$=n \cdot(n-1) \Gamma(n-1)$$
$$=n(n-1)\Gamma(n-2+1)$$
$$=n(n-1)(n-2)\Gamma(n-2)$$
$$=n(n-1)(n-2) \cdots \cdots 3 (2) (1) \Gamma (1)=n !$$
No comments yet
Show that $$\Gamma(1)=1$$
$$\Gamma(n+1)=\int_{0}^{\infty} e^{-t} t^{n} d t$$
$$\Gamma(1)=\Gamma(0+1)=\int_{0}^{\infty} e^{-x} x^{0} d x$$
$$=\int_{0}^{\infty} e^{-x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \overline{e}^{x} d x$$
$$\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x} d x=\lim _{b \rightarrow \infty}\left[-e^{-x}\right]_{0}^{b}=\lim _{b \rightarrow \infty}\left[-e^{-b}-(-e^{0})\right]$$
$$=\lim _{b \rightarrow \infty}\left[-e^{-b}+1\right]=-e^{-\infty}+1=0+1=1$$
If $$n$$ is a positive integer then $$\Gamma(n+1)=n !$$
$$\Gamma(n+1)=n \Gamma(n)$$
$$=n \Gamma(n+1-1)$$
$$=n \Gamma(n-1+1)$$
$$=n \cdot(n-1) \Gamma(n-1)$$
$$=n(n-1)\Gamma(n-2+1)$$
$$=n(n-1)(n-2)\Gamma(n-2)$$
$$=n(n-1)(n-2) \cdots \cdots 3 (2) (1) \Gamma (1)=n !$$
No comments yet
Join the conversation