${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How good was the graphics ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
للتذكير: بعض التكاملات الهامة جدا
\(\begin{array}{ll}{\text { 1. } \int x^{n} d x=\frac{x^{n+1}}{n+1}(n \neq-1)} & {\text { 2. } \int \frac{1}{x} d x=\ln |x|} \\ {\text { 3. } \int e^{x} d x=e^{x}} & {\text { 4. } \int b^{x} d x=\frac{b^{x}}{\ln b}}\end{array} \) \(\begin{array}{ll}{\text { 5. } \int \sin x d x=-\cos x} & {\text { 6. } \int \cos x d x=\sin x} \\ {\text { 7. } \int \sec ^{2} x d x=\tan x} & {\text { 8. } \int \csc ^{2} x d x=-\cot x}\end{array} \) \(\begin{array}{ll}{\text { 9. } \int \sec x \tan x d x=\sec x} & {\text { 10. } \int \csc x \cot x d x=-\csc x} \\ {\text { 11. } \int \sec x d x=\ln |\sec x+\tan x|} & {\text { 12. } \int \csc x d x=\ln |\csc x-\cot x|}\end{array} \)
\(\begin{array}{ll}{\text { 13. } \int \tan x d x=\ln |\sec x|} & {\text { 14. } \int \cot x d x=\ln |\sin x|} \\ {\text { 15. } \int \sinh x d x=\cosh x} & {\text { 16. } \int \cosh x d x=\sinh x}\end{array} \)
من خلال الـ (integrals forms) السابقة نستطيع حل اى شكل من اشكال التكامل
اذا كانت هناك (integrals) لانستطيع حلها او ليست من الاشكال السابقة
يوجد (Strategy) مكونة من اربع خطوات لحل التكامل
1. Simplify the Integrand if Possible
2. Look for an Obvious Substitution
3. Classify the Integrand According to Its Form
4. Try Again If the first three steps have not produced the answer
No comments yet
للتذكير: بعض التكاملات الهامة جدا
\(\begin{array}{ll}{\text { 1. } \int x^{n} d x=\frac{x^{n+1}}{n+1}(n \neq-1)} & {\text { 2. } \int \frac{1}{x} d x=\ln |x|} \\ {\text { 3. } \int e^{x} d x=e^{x}} & {\text { 4. } \int b^{x} d x=\frac{b^{x}}{\ln b}}\end{array} \)
\(\begin{array}{ll}{\text { 5. } \int \sin x d x=-\cos x} & {\text { 6. } \int \cos x d x=\sin x} \\ {\text { 7. } \int \sec ^{2} x d x=\tan x} & {\text { 8. } \int \csc ^{2} x d x=-\cot x}\end{array} \)
\(\begin{array}{ll}{\text { 9. } \int \sec x \tan x d x=\sec x} & {\text { 10. } \int \csc x \cot x d x=-\csc x} \\ {\text { 11. } \int \sec x d x=\ln |\sec x+\tan x|} & {\text { 12. } \int \csc x d x=\ln |\csc x-\cot x|}\end{array} \)
\(\begin{array}{ll}{\text { 13. } \int \tan x d x=\ln |\sec x|} & {\text { 14. } \int \cot x d x=\ln |\sin x|} \\ {\text { 15. } \int \sinh x d x=\cosh x} & {\text { 16. } \int \cosh x d x=\sinh x}\end{array} \)
من خلال الـ (integrals forms) السابقة نستطيع حل اى شكل من اشكال التكامل
اذا كانت هناك (integrals) لانستطيع حلها او ليست من الاشكال السابقة
يوجد (Strategy) مكونة من اربع خطوات لحل التكامل
1. Simplify the Integrand if Possible
2. Look for an Obvious Substitution
3. Classify the Integrand According to Its Form
4. Try Again If the first three steps have not produced the answer
No comments yet
Join the conversation