${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
13.500
1 month
Add to cart
29.500
4 months
Subscribe to Linear Algebra
Practice (Free)
Practice
$$x-y=5$$ $$2 x-2 y=3$$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {2} & {-2} & {3}\end{array}\right) R_{2} \rightarrow R_{2}- 2 R_{1} $$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {0} & {0} & {-7}\end{array}\right)$$
$$0 x+0 y=-7$$ $$0=-7$$ (false equation)
The system has No sol.
$$x-y=5$$ $$2 x-2 y=10$$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {2} & {-2} & {10}\end{array}\right) R_{2}\rightarrow R_{2} - 2 R_{1} $$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {0} & {0} & {0}\end{array}\right) \Rightarrow x-y=5$$
$$0=0$$
No. of var. $$>$$ No. of eq.
Infinit No. of sol.
No. of free var. = No. of var. - No. of eq.
$$=2-1$$
$$=1$$ free var.
Let $$y=r$$
$$x-y=5$$ $$x-r=5$$ $$x=5+r$$
$$x=5+r$$ $$y=r$$
$$\left(\begin{array}{c}{x} \\ {y}\end{array}\right)=\left(\begin{array}{c}{5+r} \\ {r}\end{array}\right)$$
$$\left(\begin{array}{l}{x} \\ {y}\end{array}\right)=r\left(\begin{array}{l}{1} \\ {1}\end{array}\right)+\left(\begin{array}{l}{5} \\ {0}\end{array}\right)$$
No comments yet
$$x-y=5$$
$$2 x-2 y=3$$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {2} & {-2} & {3}\end{array}\right) R_{2} \rightarrow R_{2}- 2 R_{1} $$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {0} & {0} & {-7}\end{array}\right)$$
$$0 x+0 y=-7$$
$$0=-7$$ (false equation)
The system has No sol.
$$x-y=5$$
$$2 x-2 y=10$$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {2} & {-2} & {10}\end{array}\right) R_{2}\rightarrow R_{2} - 2 R_{1} $$
$$\left(\begin{array}{cc|c}{1} & {-1} & {5} \\ {0} & {0} & {0}\end{array}\right) \Rightarrow x-y=5$$
$$0=0$$
No. of var. $$>$$ No. of eq.
Infinit No. of sol.
No. of free var. = No. of var. - No. of eq.
$$=2-1$$
$$=1$$ free var.
Let $$y=r$$
$$x-y=5$$
$$x-r=5$$
$$x=5+r$$
$$x=5+r$$
$$y=r$$
$$\left(\begin{array}{c}{x} \\ {y}\end{array}\right)=\left(\begin{array}{c}{5+r} \\ {r}\end{array}\right)$$
$$\left(\begin{array}{l}{x} \\ {y}\end{array}\right)=r\left(\begin{array}{l}{1} \\ {1}\end{array}\right)+\left(\begin{array}{l}{5} \\ {0}\end{array}\right)$$
No comments yet
Join the conversation