${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How good was the graphics ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
\(\begin{aligned} f(x) &=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} \\ &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{n}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots \end{aligned}\)
The series in is called the Taylor series of the function \(f\) at \(a\) (or about
\(a\) or centered at \(a \))
\(f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n !} x^{n}=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\cdots\)
This case arises frequently enough that it is given the special name Maclaurin series.
نظرية هامة جدا:
The Binomial Series If \(k\) is any real number and \(|x|<1,\) then
\((1+x)^{k}=\sum_{n=0}^{\infty} \left( \begin{array}{c}{k} \\ {n}\end{array}\right) x^{n}=1+k x+\frac{k(k-1)}{2 !} x^{2}+\frac{k(k-1)(k-2)}{3 !} x^{3}+\cdots\)
No comments yet
\(\begin{aligned} f(x) &=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} \\ &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{n}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots \end{aligned}\)
The series in is called the Taylor series of the function \(f\) at \(a\) (or about
\(a\) or centered at \(a \))
\(f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n !} x^{n}=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\cdots\)
This case arises frequently enough that it is given the special name Maclaurin series.
نظرية هامة جدا:
The Binomial Series If \(k\) is any real number and \(|x|<1,\) then
\((1+x)^{k}=\sum_{n=0}^{\infty} \left( \begin{array}{c}{k} \\ {n}\end{array}\right) x^{n}=1+k x+\frac{k(k-1)}{2 !} x^{2}+\frac{k(k-1)(k-2)}{3 !} x^{3}+\cdots\)
No comments yet
Join the conversation