Need Help?

Subscribe to Thermodynamics

Subscribe
  • Notes
  • Comments & Questions

$$
\text { An adiabatic capillary tube is used in some refrigeration systems to drop the pressure of the refrigerant }
$$

$$
\begin{array}{l}{\text { from the condenser level to the evaporator level. The } R-134 \text { a enters the capilary tube as a saturated liquid }} \\ {\text { at } 50^{\circ} \mathrm{C}, \text { and leaves at }-20^{\circ} \mathrm{C} \text { . Determine the quality of the refrigerant at the evaporator. }}\end{array}
$$

$$
\dot{E}_{i n}=\dot{E}_{\text {out }}
$$

$$
\dot mh_{1}=\dot m h _{2}
$$

$$
h_{1}=h_{2}
$$

$$
A-11 \longrightarrow @ \  T_{1}=50 c^{\circ} \longrightarrow h_1=h_f=123.49 kJ/kg
$$

$$
\left.\begin{array}{l}{T_{2}=-20 c^{\circ}} \\ {h_{2}=h_{1}=123.4 9 k{J} /k g}\end{array}\right\} \rightarrow X_{2}=\frac{h_2-h_f}{h_{fg}}
$$

$$
=\frac{123.49-25.49}{212.91}
$$

$$=0.046$$

$$
\begin{array}{l}{\text { A well-insulated valve is used to throttle steam from } 8 \text { MPa and } 350^{\circ} \mathrm{C} \text { to } 2 \mathrm{MPa} \text { . }} \\ {\text { Determine the final temperature of the steam }}\end{array}
$$

$$
\left.\begin{array}{l}{P_{1}=8 \mathrm{MPa}} \\ {T_{1}=350^{\circ} \mathrm{C}}\end{array}\right] \rightarrow \mathrm{A}-6
$$

$$
\rightarrow h_{1}=2988.1 \mathrm{kJ} / \mathrm{kg}
$$

$$
\dot m_{1}=\dot m_{2}=\dot m
$$

$$
\dot E_{\text {in }}=\dot{E}_{\text {out }}
$$

$$
\dot m h_1=\dot{m} h_{2} \quad \rightarrow h_{1}=h_{2}=2988.1 kJ/kg
$$

$$
\left.\begin{array}{l}{P_{2}=2 M Pa} \\ {\left(h_{2}=h_{1}=2988 \cdot 1\right)}\end{array}\right] \rightarrow T_{2}=285 {c^{\circ}}
$$

No comments yet

Join the conversation

Join Notatee Today!