${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Differential Equation
Practice (Free)
Practice
Find $$\mathrm{F}(\mathrm{t})$$ if its Laplace transform is given by $$f(s)=\frac{s-1}{s^{2}+2 s+10}+\frac{1}{\sqrt{s-1}}$$
$$F(t)=\mathcal{L}^{-1}\{f(s)\} $$
$$\mathcal {L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+10}+\frac{1}{\sqrt{s-1}}\right\} $$
$$\mathcal {L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+10}\right\}+\mathcal {L}^{-1}\left\{\frac{1}{\sqrt{s-1}}\right\} $$
$$\mathcal {L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+1-1+10}\right\}+\mathcal {L}^{-1}\left\{\frac{1}{\sqrt{s-1}}\right\} $$
$$\mathcal{L}^{-1}\left\{\frac{s-1}{(s+1)^{2}+9}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{\sqrt{s-1}}\right\} $$
$$S \longrightarrow S-1 \quad \quad S \longrightarrow S+1$$
$$e^{-t} \mathcal{L}^{-1}\left\{\frac{s-2}{s^{2}+9}\right\}+e^{t} \mathcal{L}^{-1}\left\{\frac{1}{\sqrt s}\right\} $$
$$\left.e^{-t}[\cos (3 t)-\frac{2}{3} \sin (3 t)\right]+e^{t} \frac{1}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{t}} $$
$$=F(t)$$
Find $$F(t)$$ if $$L\{F(t)\}=f(s),$$ and $$\frac{d f}{d s}=\frac{-1}{s^{2}+4 s+13} $$
$$\frac{d f}{d s}=\mathcal {L}\{-t F(t)\} $$
$$\mathcal{L}\{-t F(t)\}=\frac{-1}{s^{2}+4 s+13} $$
$$\mathcal {L}^{-1} \mathcal{L}\{ F(t)\}=\mathcal {L}^{-1} \frac{1}{s^{2}+4 s+13} $$
$$t \cdot F(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4 s+13}\right\} $$
$$=\mathcal {L}^{-t}\left\{\frac{1}{s^{2}+4 s+4-4+13}\right\} $$
$$=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4 s+4+9}\right\}=\mathcal {L}^{-1}\left\{\frac{1}{(s+2)^{2}+9}\right\} $$
$$S \rightarrow S-2$$
$$=e^{-2 t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}=e^{-2 t} \cdot \frac{1}{3} \cdot \sin (3 t)$$
$$F(t)=\frac{e^{-2 t} \sin (3 t)}{3 t} $$
Evaluate $$L^{-1}\left\{\ln \left(1-\frac{2}{s}\right)\right\}=F(t)$$
$$\mathcal{L}^{-1}\{f(s)\}=F(t)$$
$$f(s)=\ln \left(1-\frac{2}{s}\right)=\ln \left(\frac{s-2}{s}\right)=\ln (s-2)-\ln (s)$$
$$\ln \left(\frac{a}{b}\right)=\ln a-\ln b$$
$$f^{\prime}(s)=\frac{1}{s-2}-\frac{1}{s} $$
$$L[-t f(t)]=\frac{1}{s-2}-\frac{1}{s} $$
$$\mathcal {L}^{-1} L[-t F(t)]=\mathcal {L}^{-1}\left\{\frac{1}{s-2}-\frac{1}{s}\right\} $$
$$-t F(t)=\mathcal {L}^{-1}\left\{\frac{1}{s-2}-\frac{1}{s}\right\}=e^{2 t}-1$$
$$F(t)=\frac{e^{2 t}-1}{-t} $$
No comments yet
Find $$\mathrm{F}(\mathrm{t})$$ if its Laplace transform is given by $$f(s)=\frac{s-1}{s^{2}+2 s+10}+\frac{1}{\sqrt{s-1}}$$
$$F(t)=\mathcal{L}^{-1}\{f(s)\} $$
$$\mathcal {L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+10}+\frac{1}{\sqrt{s-1}}\right\} $$
$$\mathcal {L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+10}\right\}+\mathcal {L}^{-1}\left\{\frac{1}{\sqrt{s-1}}\right\} $$
$$\mathcal {L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+1-1+10}\right\}+\mathcal {L}^{-1}\left\{\frac{1}{\sqrt{s-1}}\right\} $$
$$\mathcal{L}^{-1}\left\{\frac{s-1}{(s+1)^{2}+9}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{\sqrt{s-1}}\right\} $$
$$S \longrightarrow S-1 \quad \quad S \longrightarrow S+1$$
$$e^{-t} \mathcal{L}^{-1}\left\{\frac{s-2}{s^{2}+9}\right\}+e^{t} \mathcal{L}^{-1}\left\{\frac{1}{\sqrt s}\right\} $$
$$\left.e^{-t}[\cos (3 t)-\frac{2}{3} \sin (3 t)\right]+e^{t} \frac{1}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{t}} $$
$$=F(t)$$
Find $$F(t)$$ if $$L\{F(t)\}=f(s),$$ and $$\frac{d f}{d s}=\frac{-1}{s^{2}+4 s+13} $$
$$\frac{d f}{d s}=\mathcal {L}\{-t F(t)\} $$
$$\mathcal{L}\{-t F(t)\}=\frac{-1}{s^{2}+4 s+13} $$
$$\mathcal {L}^{-1} \mathcal{L}\{ F(t)\}=\mathcal {L}^{-1} \frac{1}{s^{2}+4 s+13} $$
$$t \cdot F(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4 s+13}\right\} $$
$$=\mathcal {L}^{-t}\left\{\frac{1}{s^{2}+4 s+4-4+13}\right\} $$
$$=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4 s+4+9}\right\}=\mathcal {L}^{-1}\left\{\frac{1}{(s+2)^{2}+9}\right\} $$
$$S \rightarrow S-2$$
$$=e^{-2 t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}=e^{-2 t} \cdot \frac{1}{3} \cdot \sin (3 t)$$
$$F(t)=\frac{e^{-2 t} \sin (3 t)}{3 t} $$
Evaluate $$L^{-1}\left\{\ln \left(1-\frac{2}{s}\right)\right\}=F(t)$$
$$\mathcal{L}^{-1}\{f(s)\}=F(t)$$
$$f(s)=\ln \left(1-\frac{2}{s}\right)=\ln \left(\frac{s-2}{s}\right)=\ln (s-2)-\ln (s)$$
$$\ln \left(\frac{a}{b}\right)=\ln a-\ln b$$
$$f^{\prime}(s)=\frac{1}{s-2}-\frac{1}{s} $$
$$L[-t f(t)]=\frac{1}{s-2}-\frac{1}{s} $$
$$\mathcal {L}^{-1} L[-t F(t)]=\mathcal {L}^{-1}\left\{\frac{1}{s-2}-\frac{1}{s}\right\} $$
$$-t F(t)=\mathcal {L}^{-1}\left\{\frac{1}{s-2}-\frac{1}{s}\right\}=e^{2 t}-1$$
$$F(t)=\frac{e^{2 t}-1}{-t} $$
No comments yet
Join the conversation