Need Help?

  • Notes
  • Comments & Questions

Use spherical coordinates to Evaluate $$\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V$$
where $$B$$ is the ball with center the origin and radius $$5 .$$

$$\iiint \left(x^{2}+y^{2}+z^{2}\right)^{2} d V \rightarrow d x d y d z$$

$$\left(x^{2}+y^{2}+z^{2}\right)^{2}= \rho^{2} $$

$$\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{5}\left(\rho^{4}\right) * \rho^{2} \sin \phi d \rho d \phi d \theta$$

$$\int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{5} \rho^{6} \sin \phi d \rho d \phi d \theta$$

$$\int_{0}^{\pi} \int_{0}^{2\pi}|_{0}^{5} \frac{1}{7} p^{7} \sin \phi d \phi d \theta$$

$$=\int_{0}^{2\pi} \left.\frac{\left(5)^{7}\right.}{7}(-\cos \phi)\right|_{0}^{\pi} d \theta$$

$$=\frac{(5)^{7}}{7} *(2 \pi) *[-\cos \pi+\cos 0]$$

$$=\frac{312500 \pi}{7} $$

No comments yet

Join the conversation

Join Notatee Today!