${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
5.850
1 month
70% off
19.500
Add to cart
12.750
4 months
42.500
Subscribe to Calculus C
Practice (Free)
Practice
Evaluate the iterated integral. $$\int_{0}^{2} \int_{0}^{z^{2}} \int_{0}^{y-z}(2 x-y) d x d y d z$$
$$\int_{0}^{2} \int_{0}^{z^{2}} \int_{0}^{y-z}(2 x-y) d x d y d z$$
$$= \int_{0}^{2} \int_{0}^{z^{2}}\left[\int_{0}^{y-z} x^{2}-x y\right] d y d z$$
$$=\int_{0}^{2} \int_{0}^{z^{2}}\left[(y-z)^{2}-(y-z) y\right] d y d z$$
$$\int_{0}^{2} \int_{0}^{z^{2}}\left(z^{2}-y z\right) d y d z$$
$$\int_{0}^{2}\left[|_{0}^{z^{2}} z^{2} y-\frac{y^{2}}{2} z\right] d z$$
$$\int_{0}^{2} \left[z^{4}-\frac{z^{5}}{2}\right] d z$$
$$=|_{0}^{2}\left[\frac{z^{5}}{5}-\frac{z^{6}}{6 \times 2}\right]$$
$$=\frac{(2)^{5}}{5}-\frac{(2)^{6}}{12}=\frac{16}{15} $$
No comments yet
Evaluate the iterated integral.
$$\int_{0}^{2} \int_{0}^{z^{2}} \int_{0}^{y-z}(2 x-y) d x d y d z$$
$$\int_{0}^{2} \int_{0}^{z^{2}} \int_{0}^{y-z}(2 x-y) d x d y d z$$
$$= \int_{0}^{2} \int_{0}^{z^{2}}\left[\int_{0}^{y-z} x^{2}-x y\right] d y d z$$
$$=\int_{0}^{2} \int_{0}^{z^{2}}\left[(y-z)^{2}-(y-z) y\right] d y d z$$
$$\int_{0}^{2} \int_{0}^{z^{2}}\left(z^{2}-y z\right) d y d z$$
$$\int_{0}^{2}\left[|_{0}^{z^{2}} z^{2} y-\frac{y^{2}}{2} z\right] d z$$
$$\int_{0}^{2} \left[z^{4}-\frac{z^{5}}{2}\right] d z$$
$$=|_{0}^{2}\left[\frac{z^{5}}{5}-\frac{z^{6}}{6 \times 2}\right]$$
$$=\frac{(2)^{5}}{5}-\frac{(2)^{6}}{12}=\frac{16}{15} $$
No comments yet
Join the conversation