${ message }
Your cart is empty
Discount (${discount_percentage}%) : - ${discount}KD
Need Help?
How was the speed of the video ?
How well did you understood the video ?
Was the video helpful?
Was the notes helpful?
Sign up to try our free practice
KD
19.500
1 month
Add to cart
39.500
4 months
Subscribe to Calculus B
Practice (Free)
Practice
Find the volume of the solid obtained by rotating the region about the axis \((x=-1)\) where the region R is specified between \(y=\sqrt{x} \quad y=0\) and \(x=4\)
\(\begin{equation} \begin{array}{l|l}{x} & {y} \\ {0} & {0} \\ {1} & {1} \\ {2} & {1 \cdot 4} \\ {3} & {1 \cdot 7} \\ {4} & {2}\end{array} \end{equation}\)
\((0,0)(1,1)(2,1.4)(3,1.7)(4,2)\)
\(y : 0 \rightarrow 2\)
\(x=4 \longrightarrow x=-1 \)
\(y=\sqrt{x} \rightarrow y^{2}=(\sqrt{x})^{2} \rightarrow y^{2}=x \rightarrow x = y^{2} \)
\(r_{i n}=y^{2}-(-1)=y^{2}+1 \)
volume: \(v=\pi \int_{0}^{2}\left[{v_{out}}^{2}-{r_{ i n}}^{2}\right] d y \)
\(=\pi \int_{0}^{2}\left[(5)^{2}-\left(y^{2}+1\right)^{2}\right] d y=\pi \int_{0}^{2}\left[25-\left(y^{4}+2 y^{2}+1\right)\right] d y \)
\(=\pi \int_{0}^{2}\left[25-y^{4}-2 y^{2}-1\right] d y \)
\(=\pi \int_{0}^{2}\left[24-y^{4}-2 y^{2}\right] d y=\pi\left[24 y-\frac{y^{5}}{5}-\frac{2}{3} y\right]_{0}^{2} \)
\(=\pi\left[\left(24(2)-\frac{(2)^{5}}{5}-\frac{2}{3}(2)^{3}\right)-\left(0-0-0\right)\right] \)
\(=\pi\left[48-\frac{32}{5}-\frac{16}{3}\right]=\frac{544\pi}{15} \)
No comments yet
Find the volume of the solid obtained by rotating the region about the axis
\((x=-1)\)
where the region R is specified between
\(y=\sqrt{x} \quad y=0\)
and
\(x=4\)
\(\begin{equation} \begin{array}{l|l}{x} & {y} \\ {0} & {0} \\ {1} & {1} \\ {2} & {1 \cdot 4} \\ {3} & {1 \cdot 7} \\ {4} & {2}\end{array} \end{equation}\)
\((0,0)(1,1)(2,1.4)(3,1.7)(4,2)\)
\(y : 0 \rightarrow 2\)
\(x=4 \longrightarrow x=-1 \)
\(y=\sqrt{x} \rightarrow y^{2}=(\sqrt{x})^{2} \rightarrow y^{2}=x \rightarrow x = y^{2} \)
\(r_{i n}=y^{2}-(-1)=y^{2}+1 \)
volume:
\(v=\pi \int_{0}^{2}\left[{v_{out}}^{2}-{r_{ i n}}^{2}\right] d y \)
\(=\pi \int_{0}^{2}\left[(5)^{2}-\left(y^{2}+1\right)^{2}\right] d y=\pi \int_{0}^{2}\left[25-\left(y^{4}+2 y^{2}+1\right)\right] d y \)
\(=\pi \int_{0}^{2}\left[25-y^{4}-2 y^{2}-1\right] d y \)
\(=\pi \int_{0}^{2}\left[24-y^{4}-2 y^{2}\right] d y=\pi\left[24 y-\frac{y^{5}}{5}-\frac{2}{3} y\right]_{0}^{2} \)
\(=\pi\left[\left(24(2)-\frac{(2)^{5}}{5}-\frac{2}{3}(2)^{3}\right)-\left(0-0-0\right)\right] \)
\(=\pi\left[48-\frac{32}{5}-\frac{16}{3}\right]=\frac{544\pi}{15} \)
No comments yet
Join the conversation